a2 United States Patent

Burns et al.

US009077692B1

US 9,077,692 B1
*Jul. 7, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(63)

(1)
(52)

(58)

BLOCKING UNIDENTIFIED ENCRYPTED
COMMUNICATION SESSIONS

Applicant: Juniper Networks, Inc., Sunnyvale, CA
(US)

Inventors: Bryan Burns, Portland, OR (US);

Vladimir Sukhanov, Sunnyvale, CA

(US)

Assignee: Juniper Networks, Inc., Sunnyvale, CA

(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 8 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/723,187

Filed: Dec. 20, 2012
Related U.S. Application Data

Continuation of application No. 12/339,948, filed on
Dec. 19, 2008, now Pat. No. 8,341,724.

Int. Cl1.

HO4L 29/06 (2006.01)

U.S. CL

CPC . HO4L 63/0428 (2013.01)

Field of Classification Search

CPC oo, HO4L, 63/0227; HOAL 63/145; HO4L
63/0236; HOAL 63/0245; HO4L 63/0263;

HO4L, 63/162; HO4L 63/164; HO4L 63/166;

HO4L, 63/168

USPC oo, 3707252, 235; 709/224; 713/151;

380/28; 726/12, 13, 22, 23
See application file for complete search history.

40~

(56) References Cited

U.S. PATENT DOCUMENTS

7,508,945 B1* 3/2009
7,778,194 Bl 8/2010
8,065,721 B1* 11/2011
2002/0129140 Al* 9/2002
2006/0123481 Al 6/2006
2007/0116267 Al 5/2007 Speirs, II et al.
2007/0297418 Al* 12/2007 Lee ..o 370/395.52

(Continued)
OTHER PUBLICATIONS

Ferre Herrero 380/268

Yung

Shahccooovviiiiiis 726/13
Peledetal. ... 709/224
Bhatnagar et al.

James McCaffrey, “Randomness in Testing”, Sep. 2006, http://msdn.
microsoft.com/em-us/magazine/cc163551 .aspx.™

(Continued)

Primary Examiner — Justin T Darrow
Assistant Examiner — Hee Song
(74) Attorney, Agent, or Firm — Shumaker & Sieffert, P.A.

(57) ABSTRACT

Techniques are described for blocking unidentified encrypted
communication sessions. In one embodiment, a device
includes an interface to receive a packet, an application iden-
tification module to attempt to identify an application asso-
ciated with the packet, an encryption detection module to
determine whether the packet is encrypted when the applica-
tion identification module is unable to identify an application
associated with the packet, and an attack detection module to
determine whether the packet is associated with a network
attack, to forward the packet when the packet is not associated
with a network attack, and to take a response when the packet
is associated with a network attack, wherein the encryption
detection module sends a message to the attack detection
module that indicates whether the packet is encrypted,
wherein when the message indicates that packet is encrypted,
the attack detection module determines that the packet is
associated with a network attack.

18 Claims, 8 Drawing Sheets

28

STATEFUL
INSPECTION ENGINE

DEFINITIONS

PATTERNS
TABLE
ATTACK 54

& ANOMALIES

TABLE
58

msouuzn‘ N |reassemsLy| | ATTAcK DETECTION
TRAFFIC MODULE MODULE
50 82
I]
APPLICATION ENCRYPTION
IDENTIFICATION DETECTION
MODULE MODULE
3 58
30

[PROTOCOL DECODERS

)__

US 9,077,692 B1
Page 2

(56) References Cited OTHER PUBLICATIONS

U.S. PATENT DOCUMENTS James McCaffrey, “Randomness in Testing,” Sep. 2006, http://msdn.
microsoft.com/en-us/magazine/cc163551.aspx (12 pgs.).
2008/0077705 Al* 3/2008 Lietalccccoeovnnn 709/236
2009/0116394 Al 5/2009 Varadarajan et al.
2011/0041182 A1 2/2011 Stenfelt * cited by examiner

U.S. Patent

Jul. 7, 2015

Sheet 1 of 8

NETWORK

PUBLIC

US 9,077,692 B1

NODE
8A

ENTERPRISE

s

FIREWALL
9
DS
10
19
SWITCH
18 ~
SECURITY
Ngg E MANAGEMENT I:.)4S
- DEVICE -

FIG. 1

US 9,077,692 B1

Sheet 2 of 8

Jul. 7, 2015

U.S. Patent

Jiddvil

annogino © .
oz -/

mxo._.‘qw_._.w_z__znzvl

v —

[A AR

]

1€
LNINOJINOD
ONIGHVYMAOL

INVd
ONIGUVMEOA

o

<

A

“J

M

i

SUIA023A
T102010¥d

)

:

8¢
INIONZ
NOILOZdSNI
nd3aLvis

A

.mmk

-
L

FTINAOW
LININIOVYNVIN
ALRINDIS

L.

S
379V.L MOTd

)

J

.

4
FINAON
SISATVNY
MOTd

AJ

J

W31SAS NOILD313d NOISN™LNI

(AN E

| OlddvdL
U pz GNNOENI

0z

U.S. Patent Jul. 7, 2015 Sheet 3 of 8 US 9,077,692 B1

a0 -4 33
) 28
STATEFUL
INSPECTION ENGINE PATTERNS A
TABLE
DEFINITIONS
DATA 33 (ANOMALIES |
BUFFER TABLE
56
A <
\
24 -
INBOUND |). | REASSEMBLY | | ATTACK DETECTION
TRAFFIC [P MODULE MODULE ——————
s
50 52
A A
\
APPLICATION ENCRYPTION
IDENTIFICATION DETECTION
MODULE MODULE
51 58
A
Y 30
(PROTOCOL DECODERS }

FIG. 3

U.S. Patent Jul. 7, 2015 Sheet 4 of 8 US 9,077,692 B1

RECEIVE CONFIGURATION |~ 70
INFORMATION
MONITOR NETWORK L~ 72
TRAFFIC
L~ 74
RECEIVE PACKET

NO

APPLICATION
IDENTIFIABLE?

80

PACKET FULLY

- 78
ENCRYPTED? FORWARD PACKET

OUTPUT ALERT AND TAKE
PROGRAMMED RESPONSE

FIG. 4

U.S. Patent Jul. 7, 2015 Sheet 5 of 8 US 9,077,692 B1

RECEIVE CONFIGURATION |—120
INFORMATION

L]

MONITOR NETWORK —~ 122
TRAFFIC

v

RECEIVE COMMUNICATION |—124
SESSION PACKET

NO APPLICATION

IDENTIFIABLE?

128

PACKET FULLY

- 134
ENCRYPTED? FORWARD PACKET

KEY
EXCHANGE
IDENTIFIED?

YES

~132

OUTPUT ALERT AND TAKE
PROGRAMMED RESPONSE

FIG. 5

U.S. Patent Jul. 7, 2015 Sheet 6 of 8 US 9,077,692 B1

/140
RECEIVE PACKET
A J 142
DETERMINE SIZE ‘N’ |~
OF THE PACKET

Y 144
DETERMINE MEAN VALUE OF /
BYTES IN THE PACKET

L 4 146
DETERMINE RUNS OF BYTES /
IN THE PACKET

h 4
DETERMINE EXPECTED /148
NUMBER OF RUNS
FOR THE PACKET

\ 4

DETERMINE VARIANCE /1 50

FOR THE PACKET

152

156

#RUNS
WITHIN
VARIANCE?

DETERMINE THAT PACKET |~
IS NOT ENCRYPTED

154

DETERMINE THAT PACKET
IS ENCRYPTED

FIG. 6

U.S. Patent Jul. 7, 2015 Sheet 7 of 8 US 9,077,692 B1

310A —

310B —

310C —

FIG. 7A

U.S. Patent Jul. 7, 2015 Sheet 8 of 8 US 9,077,692 B1

342A —

342B —

342C —

342D —

342E —

342F —

FIG. 7B

US 9,077,692 B1

1
BLOCKING UNIDENTIFIED ENCRYPTED
COMMUNICATION SESSIONS

This application is a Continuation of U.S. application Ser.
No. 12/339,948, filed Dec. 19, 2008, which is hereby incor-
porated by reference in its entirety.

TECHNICAL FIELD

This invention relates to computer networks and, more
particularly, to network intrusion detection and prevention
devices and systems.

BACKGROUND

A computer network typically includes a collection of
interconnected computing devices that exchange data and
share resources. These devices include, for example, web
servers, database servers, file servers, routers, printers, end-
user computers and other devices. Each of the variety of
devices executes a myriad of different services and commu-
nication protocols. Each of the different services and com-
munication protocols exposes the network to different secu-
rity vulnerabilities.

In certain contexts, such as within a corporate enterprise
network, a system administrator or other system owner would
like to restrict or limit access to and usage of network
resources. For example, the system administrator may wish to
prevent network access by an unknown application because
the unknown application may be malware, such as a virus,
trojan, or other malicious software. The system administrator
may also wish to prevent users from using certain applica-
tions due to various considerations. For example, the system
administrator may wish to block network access to applica-
tions such as BitTorrent, Skype, or other “grayware” applica-
tions due to consumption of network resources or security
concerns with respect to the applications. Therefore, the sys-
tem administrator may configure a firewall or other network
device to block certain applications and protocols.

In order to identify network communications associated
with unwanted applications, IDSs or other security systems
may analyze packet streams of the network communications
and employ behavioral analysis. For example, a security sys-
tem may perform deep packet inspection and apply patterns to
the payloads of the packets in an attempt to identify the source
software application. However, developers of applications
that are commonly blocked, such as Skype, BitTorrent, and
malware such as viruses and trojans, will often employ tech-
niques to circumvent a system administrator’s or other user’s
attempt to block these applications. For example, a virus
programmer may code the virus to encrypt all transmissions
in accordance with an encryption protocol. For example, the
developers may code the application to encrypt an entire
payload of a TCP/IP packet, including areas of the packet that
would typically be unencrypted. As a result, intrusion detec-
tion system (IDS) or other security devices are unable to
perform deep packet inspection and often have difficulty
identifying the particular type of software application that
originated the network communication.

As one example, the Back Orifice protocol depends upon a
random number generator that is seeded, i.e. initialized, with
a secret key. Both parties to a Back Orifice communication
session know the secret key in advance of the communication
session, and both parties have the same random number gen-
erator. By seeding the random number generator with the
same secret key, both parties are able to encrypt data without
exchanging a key during the communication session. In this

10

15

20

25

30

35

40

45

50

55

60

65

2

way, the parties seek to avoid detection of any key exchange
and session establishment. Moreover, parties to the Back
Orifice protocol encrypt all data in the packet, including the
Back Orifice application-layer header. Back Orifice uses a
17-byte application-layer header that is encrypted, in addition
to the payload, by one party and decrypted by the other party
to a communication session.

As another example, various BitTorrent client applications
or other peer-to-peer client software applications implement
similar encryption schemes in an attempt to avoid detection
by security devices. For example, some BitTorrent software
clients implement protocol encryption, message stream
encryption, or protocol header encryption. Some BitTorrent
clients provide an option for users to select between encrypt-
ing only the protocol header or the entire packet. To provide
encryption, specifically to determine a key for encryption,
some BitTorrent clients utilize a distributed hash table
(DHT). A DHT includes an infohash, which is the result of a
hash function performed on a file. The infohash may be used
by each peer of a peer-to-peer file exchange using the BitTor-
rent protocol such that each peer may mutually generate an
encryption key, such as an RC4 encryption key. In this man-
ner, each peer may generate the same encryption key without
exchanging the encryption key.

Enterprises may wish to block such applications for a vari-
ety of reasons. For example, a system administrator may wish
to block the Back Orifice application because a malicious
user may intentionally or inadvertently use Back Orifice to
install a virus or to take control of a computer or server
remotely. As another example, the administrator may wish to
block applications that utilize a large amount of bandwidth,
such as BitTorrent clients or Skype.

Conventional techniques for identifying software applica-
tions associated with encrypted data streams are problematic.
For example, a conventional IDS may, for example, attempt to
apply behavior analysis to the overall communication ses-
sion, such as by determining an average size and frequency of
data transmission for a certain port or session. If the average
size and frequency of data transmission matches known char-
acteristics for a malicious or unwanted application, the IDS
may block further communication of that session. However,
this method of profiling encrypting communication sessions
in an attempt to identify the particular originating software
application requires a long series of packet exchanges before
detection of the unwanted application. Moreover, this method
may fail to identify certain unwanted applications and may
trigger false positives for desirable applications.

SUMMARY

In general, techniques are described for discovering and
preventing network access or network utilization by software
applications that employ encrypted communication. The
techniques described herein may be employed by an intrusion
detection system (IDS), an intrusion detection and prevention
(IDP) device or other security device. An IDP may, in accor-
dance with the techniques herein, monitor network traffic into
and out of an enterprise network. The IDP determines
whether a communication session is occurring in accordance
with a known network protocol. For example, the IDP may
identify the application in use for the communication session
or the IDP may determine whether the communication ses-
sion is following a known network protocol.

When the IDP cannot determine the network protocol or
the application in use for the communication session, the IDP
determines whether packets being exchanged as part of the
communication session are encrypted. For example, in one

US 9,077,692 B1

3

embodiment, the IDP analyzes the randomness of the pack-
et’s TCP/IP payload. Where a packet’s TCP/IP payload has a
high degree of randomness, the IDP determines that the pay-
load is likely encrypted. When the IDP determines that the
payload is encrypted, and not as part of an identified encryp-
tion protocol, the IDP determines that the communication
session is unwanted or malicious. Accordingly, the IDP ter-
minates the communication session and records various ele-
ments of the communication session in an activity log.

In one embodiment, a method includes receiving a network
packet, using an application-layer header of the packet, deter-
mining whether the packet is associated with an identifiable
network application, when the packet is not determined to be
associated with an identifiable network application, deter-
mining whether data in the packet is encrypted by calculating
arandomness value of the packet from a payload of the packet
that includes the application-layer header and an application-
layer payload and determining that the packet is encrypted
when the randomness value exceeds a randomness threshold,
and, when the data in the packet is determined to be
encrypted, executing a programmed response.

In another embodiment, a device includes an interface to
receive a packet, an application identification module to
attempt to identify an application associated with the packet,
an encryption detection module to determine whether the
packet is encrypted when the application identification mod-
ule is unable to identify an application associated with the
packet, and an attack detection module to determine whether
the packet is associated with a network attack, to forward the
packet when the packet is not associated with a network
attack, and to take a response when the packet is associated
with a network attack, wherein the encryption detection mod-
ule sends a message to the attack detection module that indi-
cates whether the packet is encrypted, wherein when the
message indicates that packet is encrypted, the attack detec-
tion module determines that the packet is associated with a
network attack.

In another embodiment, a computer-readable medium
stores instructions. The computer-readable medium may be a
computer-readable storage medium. The instructions cause a
programmable processor to receive a network packet, deter-
mine whether the packet is associated with a network appli-
cation using an application-layer header of the packet, deter-
mine whether data in the packet is encrypted, when the packet
is not determined to be associated with an identifiable net-
work application, by calculating a randomness value of the
packet from a payload of the packet that includes the appli-
cation-layer header and an application-layer payload and
determining that the packet is encrypted when the random-
ness value exceeds a randomness threshold, and, when the
data in the packet is determined to be encrypted, execute a
response, and, when the data in the packet is determined not
to be encrypted, forwarding the packet.

The techniques described herein may provide several
advantages. For example, the techniques described herein
may permit improved discovery and prevention of undesir-
able applications participating in a network communication
session. These techniques may further permit early discovery
of'an undesirable application as of a first packet is transmitted
by the application after a communication session is estab-
lished.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and drawings,
and from the claims.

10

15

20

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an exemplary enter-
prise computer network in which an intrusion detection sys-
tem (IDS) detects and prevents unwanted applications and
protocols in accordance with the principles of the invention.

FIG. 2 is a block diagram illustrating an exemplary
embodiment of an IDS in further detail.

FIG. 3 is a block diagram that illustrates an example
embodiment of a stateful inspection engine of the IDS.

FIG. 4 is a flowchart illustrating an exemplary operation of
an IDS in accordance with the techniques described herein.

FIG. 5 is a flowchart illustrating another exemplary opera-
tion of an IDS in accordance with the techniques described
herein.

FIG. 6 is a flowchart illustrating an exemplary method to
determine whether a packet is fully encrypted.

FIGS. 7A-7B are screenshots illustrating an exemplary
administrator user interface presented by an exemplary
embodiment of a security management module.

DETAILED DESCRIPTION

FIG. 1 is a block diagram illustrating an exemplary system
2 in which enterprise computer network 4 includes intrusion
detection system (IDS) 10 that intercepts packet flows asso-
ciated with communication sessions and processes the packet
flows to filter unwanted or malicious packet flows in accor-
dance with the principles of the invention. In the example
embodiment of FIG. 1, IDS 10 is a single network device.
Network 4 also includes a private enterprise computing net-
work 5 that is coupled to public network 6, such as the
Internet. Public network 6 may include, for example, one or
more client computing devices. Firewall 9 protects enterprise
network 5 and, in particular, internal computing nodes
8A-8N. Computing nodes 8A-8N (computing nodes 8) rep-
resent any private computing device within enterprise net-
work 5, including workstations, file servers, print servers,
database servers, printers and other devices.

In one embodiment, IDS 10 attempts to identify applica-
tions and protocols for each communication session between
computing nodes 8 and other computing devices in public
network 6. Exemplary techniques for identifying specific
applications and protocols are described in greater detail in
U.S. patent application Ser. No. 11/835,923, Burns et al.,
“Identifying Applications for Intrusion Detection Systems,”
filed Aug. 8, 2007, assigned to the assignee of the present
application, which is hereby incorporated by reference in its
entirety.

Although IDS 10 may identify many of the applications
and protocols in use for these communication sessions, cer-
tain applications, such as certain applications executing on
computing nodes 8, may attempt to hide their identities from
IDS 10. For example, these applications may encrypt appli-
cation-layer data in the packets’ payloads, such as portions of
an application-layer header and/or an application-layer pay-
load. These software applications may also begin communi-
cating using encrypted packet streams without first perform-
ing a key exchange when establishing the communication
session. The techniques described herein recognize that most
legitimate applications that utilize encryption often first per-
form an identifiable key exchange when establishing a com-
munication session and before beginning encryption of pack-
ets associated with that session. The techniques also
recognize that illegitimate applications, on the other hand,
attempt to hide the key exchange by performing a key
exchange during a different communication session, through

US 9,077,692 B1

5

the use of a hash function performed on the communicated
data, by agreeing on a key before initiating the communica-
tion session, by exchanging the key in an out-of-band com-
munication, or through some other nonstandard method.

Moreover, the techniques further recognize that many soft-
ware applications, in an attempt to avoid detection, frequently
encrypt all or portions of an application-layer header within
each packet as well as application-layer data carried by the
packet. For example, these programs may encrypt the entire
payload of an Internet protocol suite packet (TCP/IP) packet.
The techniques described herein recognize that, generally, a
legitimate application following a well-known encryption
protocol, such as the secure socket layer (SSL) protocol does
not encrypt the application-layer header, the transportation
communication protocol (TCP) header, or the Internet proto-
col (IP) header, but tend to only encrypt application-layer data
within the packet. It has been determined that applications
attempting to avoid detection may, however, encrypt the
application-layer header, as well as the application-layer pay-
load, without encrypting the TCP header or the IP header.
Packets encrypted by these applications are generally
referred to herein as “fully encrypted,” because both the
application-layer header and the application-layer payload
are encrypted in these packets. IDS 10 attempts to identify
those communication sessions in which the packets are fully
encrypted. Where IDS 10 identifies a packet with an
encrypted header, IDS 10 determines that the packet likely
originated from an unwanted application, such as Back Ori-
fice, and blocks the packet and future packets of the commu-
nication session.

Where IDS 10 is able to identify the application using a
particular communication session, IDS 10 may either permit
or prevent the communication session from continuing. For
example, a system administrator may configure IDS 10 to
explicitly allow all identifiable applications, allow all appli-
cations except for a specified list of identifiable applications,
or prevent all communications except for communications
from a specified list of permitted software applications. In
cases where IDS 10 is unable to identify the application, IDS
10 may further inspect characteristics of the data from the
communication session to determine whether the data is
encrypted. As one example, IDS 10 may identify an encrypted
communication session by determining whether the data in
the communication session exceeds a randomness threshold.
A system administrator may configure IDS 10 to establish or
modify the randomness threshold. When the data from the
communication session exceeds the randomness threshold,
IDS 10 determines that the data is encrypted. Upon determin-
ing that the packet flows of the communication session are
encrypted, IDS 10 applies the principles described herein to
determine whether the communication session is associated
with an allowed application or a typically unwanted applica-
tion. For example, IDS 10 may then determine whether a
proper key exchange was initially detected for the communi-
cation session and/or whether the communication session
contains fully encrypted packets or whether only application-
layer data within the packets is encrypted.

IDS 10 may be configurable in a variety of ways. For
example, in one embodiment, IDS 10 may permit a commu-
nication session that is unencrypted to continue, despite being
unable to identify a particular application that is using the
communication session. In one embodiment, where IDS 10
determines that a communication session, for which an appli-
cation cannot be identified, is encrypted, IDS 10 may termi-
nate the communication session. IDS 10 may take other
actions as well, such as dropping the packet, blocking future
sessions from a computing device that initiated the commu-

10

15

20

25

30

35

40

45

50

55

60

65

6

nication session, or other actions. In one embodiment, where
IDS 10 determines that a communication session, for which
an application cannot be identified, is encrypted, IDS 10 may
further determine whether a key exchange associated with the
communication session can be identified; where a key
exchange has been identified, IDS 10 may permit the com-
munication session and where a key exchange has not been
identified, IDS 10 may terminate the communication session.
In one embodiment, IDS 10 may be configured to take any or
all of the above actions, in accordance with a user configura-
tion that a user, such as a system administrator, may config-
ure.

In some embodiments, enterprise network 5 includes mul-
tiple IDSs 10 and 14 located within different regions (e.g.,
sub-networks) of enterprise network 5. Security management
device 18 may operate as a central device for managing IDSs
10 and 14. Although the example illustrated in FIG. 1 is
described in terms of dedicated IDSs 10 and 14, the function-
ality described herein may be incorporated within other
devices, such as firewall 9 or switch 19.

The example embodiment of IDS 10 portrayed by FIG. 1
may provide several advantages. For example, IDS 10 may
discover an undesirable application participating in a network
communication session with a network device, such as one of
nodes 8, of enterprise 5. IDS 10 may also discover the unde-
sirable application as early as the first transmitted packet after
acommunication session is established, e.g., when the packet
is fully encrypted. In this manner, IDS 10 may block the
communication session from the undesirable application, and
other traffic of the communication session, as early as the first
packet after the communication session is established.

FIG. 2 is a block diagram illustrating an example embodi-
ment of an IDS 20. In the illustrated example, IDS 20 includes
a forwarding plane 22 that transparently monitors inbound
network traffic 24 and forwards the network traffic as out-
bound network traffic 26. In the example illustrated by FI1G. 2,
forwarding plane 22 includes flow analysis module 25, state-
ful inspection engine 28, protocol decoders 30, forwarding
component 31 and security management module 44.

Security management module 44 presents a user interface
by which administrator 42 configures IDS 20. For example,
administrator 42 may configure IDS 20 to monitor particular
subnets of the enterprise network. In addition, security man-
agement module 44 presents a user interface by which admin-
istrator 42 may specify attack definitions 33, which security
management module 44 relays to stateful inspection engine
28. In one embodiment, attack definitions 33 may be com-
pound attack definitions.

Security management module 44 may further present a
user interface by which administrator 42 may configure IDS
20 to take particular actions when a fully encrypted packet is
identified. For example, the user interface may permit the
administrator to drop all fully encrypted packets, log details
about the communication session associated with the fully
encrypted packets, drop the packets only if a key exchange
has not been previously identified for the communication
session, throttle down the communication session with fully
encrypted packets to reduce the bandwidth usage of that
communication session, or other actions. The user interface
may also enable administrator 42 to configure a randomness
threshold that IDS 20 uses to determine whether a packet is
encrypted, as described further herein.

Flow analysis module 25 receives inbound traffic 24 and
identifies network flows within the traffic. Each network flow
represents a flow of packets in one direction within the net-
work traffic and is identified by at least a source address, a
destination address and a communication protocol. Flow

US 9,077,692 B1

7

analysis module 25 may utilize additional information to
specify network flows, including source media access control
(MAC) address, destination MAC address, source port, and
destination port. Other embodiments may use other informa-
tion to identify network flows, such as IP addresses.

Flow analysis module 25 maintains data within flow table
35 that describes each active packet flow present within the
network traffic. Flow table 35 specifies network elements
associated with each active packet flow, i.e., low-level infor-
mation such as source and destination devices and ports asso-
ciated with the packet flow. In addition, flow table 35 may
identify pairs of packet flows that collectively form a single
communication session between a client and server. For
example, flow table 35 may designate communication session
as pairs of packet flows in opposite directions for flows shar-
ing at least some common network addresses, ports and pro-
tocol.

In one embodiment, to determine whether a packet flow is
associated with an identifiable application, stateful inspection
engine 28 buffers a copy of the packet flow and reassembles
the buffered packet flow to form application-layer communi-
cations. For example, stateful inspection engine 28 may
reconstruct TCP segments into application-layer communi-
cations, which represent protocol-specific messages.

Where stateful inspection engine 28 is unable to determine
an identity of an application associated with a packet flow,
stateful inspection engine 28 performs additional analysis on
the packet flow. In one embodiment, for example, stateful
inspection engine 28 attempts to determine whether the
packet flow is encrypted. When stateful inspection engine 28
determines that the packet flow is encrypted, stateful inspec-
tion engine 28 further determines whether characteristics of
the communication session indicates that the packet flow is
associated with an unwanted software application. Stateful
inspection engine 28 may, in one embodiment, determine
whether a key exchange has occurred for the communication
session when stateful inspection engine 28 identifies an
encrypted packet of the communication session. In this
embodiment, when stateful inspection engine 28 determines
that a key exchange has occurred, stateful inspection engine
28 permits the communication session to continue, but when
stateful inspection engine 28 determines that a key exchange
has not occurred, stateful inspection engine 28 takes a pro-
grammed response, e.g., to block the communication session,
block future communication sessions from a peer of the com-
munication session, output an alert, or other actions.

In the event a security risk is detected, stateful inspection
engine 28 outputs an alert 40 to security management module
44 for logging and further analysis. In addition, stateful
inspection engine 28 may take additional actions, such as
dropping the packets associated with the communication ses-
sion, automatically closing the communication session, or
other actions. If no security risk is detected for a given appli-
cation-layer communication session, stateful inspection
engine 28 instructs forwarding component 31 to forward the
packet flows between the peers. Forwarding component 31
may, for example, maintain a routing table that stores routes
in accordance with a topology of enterprise network 5 for use
in forwarding the packet flows.

FIG. 3 is a block diagram that illustrates an example
embodiment of stateful inspection engine 28. In the example
embodiment, stateful inspection engine 28 includes reassem-
bly module 50, application identification module 51, and
attack detection module 52. In addition, stateful inspection
engine 28 includes patterns table 54, data buffer 55, anoma-
lies table 56, and attack definitions 33.

10

15

20

25

30

35

40

45

50

55

60

65

8

Reassembly module 50 receives inbound network traffic
24 and reassembles application-layer communications from
the packet flows. Reassembly module 50 forwards the reas-
sembled application-layer communications to the appropri-
ate protocol decoders 30 for processing.

Stateful inspection engine 28 stores attack definitions 33
received from security management module 44. Attack defi-
nitions 33 may be stored, for example, in a computer-readable
medium, such as random access memory (RAM). Each of
attack definitions 33 specifies a combination of one or more
patterns specified within patterns table 54 and one or more
protocol-specific anomalies specified within anomalies table
56.

Application identification module 51 attempts to identify
an application associated with each of the intercepted com-
munication sessions. In one embodiment, when stateful
inspection engine 28 receives a packet as part of a packet flow,
reassembly module 50 buffers the packet in data buffer 55.
Reassembly module 50 attempts to reconstruct application
layer data from the packets in data buffer 55. Application
identification module 51 then attempts to identify the appli-
cation associated with the packets in accordance with this
reconstructed data. In other embodiments, application iden-
tification module 51 may use other techniques to attempt to
identify the application associated with the communication
session.

Application identification module 51 sends data from the
packets to protocol decoders 30. When application identifi-
cation module 51 is able to determine the application associ-
ated with the communication session, application identifica-
tion module 51 sends data from the communication session to
a corresponding one of protocol decoders 30. When applica-
tion identification module 51 is not able to identify an appli-
cation corresponding to the communication session, applica-
tion identification module 51 sends the data from the
communication session to a default protocol decoder of pro-
tocol decoders 30.

In any case, protocol decoders 30 receive data of the com-
munication session from application identification module 51
and attempt to identify a network protocol being used by the
communication session. Protocol decoders 30 utilize an
application-layer header of a packet of the communication
session to attempt to identify a protocol being used by the
communication session. When the application-layer headeris
encrypted, however, protocol decoders 30 may not be able to
identify the protocol being used by the communication ses-
sion. Protocol decoders 30 represent a set of one or more
protocol-specific software modules. Certain ones of protocol
decoders 30 may correspond to a different communication
protocol or service. Once protocol decoders 30 have identi-
fied a protocol corresponding to the communication session,
protocol decoders 30 forward the data from the communica-
tion session to attack detection module 52.

In one embodiment, one of protocol decoders 30 corre-
sponds to a default protocol decoder. When application iden-
tification module 51 is unable to determine an application
corresponding to a communication session, application iden-
tification module 51 sends data from that communication
session to the default protocol decoder. The default protocol
decoder attempts to identity various elements of the commu-
nication session that make the communication session appear
to conform to a protocol. For example, the default protocol
decoder attempts to analyze the bi-directional communica-
tions for the communication session to identify a key
exchange for cryptography. As another example, the default
protocol decoder attempts to identify regularly occurring pat-
terns that correspond to protocol headers in the packets. Other

US 9,077,692 B1

9

embodiments may utilize other detection algorithms to deter-
mine if the communication session is following a protocol,
even if the protocol is unknown.

When the default protocol decoder of protocol decoders 30
is able to identify that the communication session is following
a protocol, the default protocol decoder forwards data from
the communication session to attack detection module 52.
When the default protocol decoder of protocol decoders 30 is
unable to identify a protocol for the communication session,
however, the default protocol decoder sends data of the com-
munication session to encryption detection module 58.

Encryption detection module 58 attempts to determine
whether the packets of the communication session are fully
encrypted, i.e., that the application-layer header as well as the
application-layer payload are encrypted. For example,
encryption detection module 58 may extract the payload from
a TCP/IP packet, which frequently includes an application-
layer packet header (e.g., HTTP header) and application-
layer payload. Encryption detection module 58 then analyzes
characteristics of the TCP/IP payload to determine whether
the payload of the TCP/IP packet is fully encrypted. That is,
encryption detection module 58 examines the entire payload
of'a TCP/IP packet, including a region that would typically be
an application-layer header, and compare characteristics of
the TCP/IP payload to a randomness threshold to determine if
the TCP/IP payload that would normally correspond to the
application-layer header as well as the application-layer pay-
load are encrypted.

In one embodiment, administrator 42 (FIG. 2) may config-
ure a randomness threshold of IDS 20 (FIG. 2). In another
embodiment, IDS 20 utilizes a randomness threshold speci-
fied by a randomness detection algorithm, such as the Wald-
Wolfowitz runs test algorithm. Encryption detection module
58 determines a randomness value for a packet of the com-
munication session being examined, i.e., the TCP/IP payload
of'a packet of the communication session. When the random-
ness value of a particular TCP/IP payload of the communica-
tion session exceeds the randomness threshold, encryption
detection module 58 determines that the communication ses-
sion is encrypted. Accordingly, encryption detection module
58 sends a message to attack detection module 52 that the
communication session is being conducted by an undesirable
application. Attack detection module 52, therefore, may per-
form one or more of a variety of actions. For example, attack
detection module 52 may terminate the communication ses-
sion, log the communication session, generate a message for,
e.g., administrator 42, or take other actions.

Encryption detection module 58 may implement and
execute one or more methods to determine a randomness
value. A detailed description of an exemplary one of such
algorithms is discussed with respect to FIG. 6. As one
example, encryption detection module 58 may implement the
Wald-Wolfowitz runs test. Encryption detection module 58
may also apply one or more filters to a packet to determine
whether the packet is random. Encryption detection module
58 may use any algorithm that is able to determine a random-
ness value, and should not be understood to be limited to the
Wald-Wolfowitz runs test or filters. Encryption detection
module 58 may also provide a user, such as administrator 42,
with the ability to apply additional tests for randomness of the
data to determine the randomness value, or with the ability to
add, remove, or edit the filters.

FIG. 4 is a flowchart illustrating an exemplary operation of
an IDS in accordance with the techniques described herein.
For exemplary purposes, the flowchart is described in refer-
ence to IDS 20 (FIG. 2).

30

40

45

50

55

10

Initially, security management module 44 receives con-
figuration information from administrator 42 and, in
response, configures IDS 20 to monitor a network or portions
thereof (subnets) of interest (70). During this process, con-
figuration manager 44 presents a user interface by which
administrator 42 specifies patterns or other attack definitions
33. For example, administrator 42 may configure IDS 20 to
block all packets deemed to be fully encrypted and to log
information about the communication session associated
with the blocked packets. Administrator 42 may also config-
ure IDS 20 to throttle down (i.e., bandwidth limit) the com-
munication session associated with the packets to minimize
the bandwidth used by the communication session. Admin-
istrator 42 may also configure IDS 20 to block future com-
munication sessions from either or both of the communicat-
ing devices. IDS 20 may additionally include a default
configuration that specifies actions IDS 20 should take when
IDS 20 detects a fully encrypted packet. IDS 20 may, for
example, be programmed to let such packets pass by default,
or to block all fully encrypted packets by default.

Once configured, IDS 20 monitors network traffic 24 (72).
In some configurations, stateful inspection engine 28 of for-
warding plane 22 may receive network traffic and mirror the
network traffic for purposes of analysis. Forwarding compo-
nent 31 seamlessly forwards the original network traffic.

Stateful inspection engine 28 of forwarding plane 22 next
receives a packet, e.g. from flow analysis module 25 (74).
While stateful inspection engine 28 may receive all packets of
a particular communication session, for the purposes of this
discussion, it is assumed that this packet is the first packet
following the packets used to establish the three-way hand-
shake of TCP/IP. In general, IDS 20 may be capable of iden-
tifying certain network attacks as early as with this first
packet.

Application identification module 51 attempts to identify
an application associated with the received packet (76). For
example, application identification module 51 may inspect
the packet header to determine the destination port of the
packet. In some cases, the destination port is associated with
the protocol or application being used for the communication
session. For example, port 80 is typically associated with
HTTP traffic, while port 22 is typically associated with SSH
traffic. Application identification module 51 may also inspect
an application-layer header, within a TCP/IP payload of the
packet, to identify the application associated with the packet.
Application identification module 51 may use any known or
future technique to attempt to identify the application asso-
ciated with the communication session.

When application identification module 51 is able to deter-
mine the application associated with the communication ses-
sion (“YES” branch of 76), application identification module
51 forwards the packet (78). In one embodiment, application
identification module 51 may send the packet to protocol
decoders 30 to identify the protocol in use for the communi-
cation session. In another embodiment, application identifi-
cation module 51 sends the packet to attack detection module
52 to inspect the packet and to determine whether the packet
is associated with a network attack. In yet another embodi-
ment, IDS 20 simply forwards the packet towards its destina-
tion in the network.

When application identification module 51 is unable to
determine the application associated with the communica-
tion, however, (“NO” branch of 76), application identification
module 51 sends the packet to encryption detection module
58 to determine whether the packet flow represents an
encrypted packet flow. In one embodiment, application iden-
tification module 51 may first send the packet to protocol

US 9,077,692 B1

11

decoders 30. Protocol decoders 30 attempt to determine if the
packet resembles a protocol by, for example, looking for a
particular pattern of data at particular locations in the packet,
such as in the portion of the TCP/IP payload that typically
carries an application-layer header.

Encryption detection module 58 inspects the packet when
anapplication and/or protocol cannot otherwise be associated
with the packet and the corresponding communication ses-
sion. Encryption detection module 58 determines whether the
packet is fully encrypted (80). That is, encryption detection
module 58 examines the packet, including the application-
layer header, to determine whether the packet, including the
application-layer header, is encrypted. Encryption detection
module 58 analyzes the TCP/IP payload of the packet to
determine a randomness value of the TCP/IP payload, which
includes the application-layer header as well as the applica-
tion-layer payload. Where the randomness value ofthe packet
exceeds a threshold, which may be predefined or may be
configured by an administrator, encryption detection module
58 determines that the packet is encrypted.

When encryption detection module 58 determines that the
packet is not fully encrypted (“NO” branch of 80), either
because the packet is not encrypted at all or because the
packet is part of a valid encryption scheme, for example an
encryption scheme that does not encrypt the application-layer
header, encryption detection module 58 may forward the
packet (78). In one embodiment, IDS 20 may simply forward
the packet toward its network destination. In another embodi-
ment, encryption detection module 58 may send the packet to
attack detection module 52 to determine whether the packet
represents a network attack.

When encryption detection module determines that the
packet is fully encrypted, however, (“YES” branch of 80),
encryption detection module 58 may output an alert and take
a programmed response (82). The response to take may be in
accordance with configuration data received from, e.g.,
administrator 42, at step (70). For example, the programmed
response may be to terminate the communication session, to
block future communication sessions from the peer that ini-
tiated the communication session, or other actions.

FIG. 5 is a flowchart illustrating another exemplary opera-
tion of an IDS in accordance with the techniques described
herein. For exemplary purposes, the flowchart is described in
reference to another exemplary embodiment of IDS 20 (FIG.
2).

Initially, security management module 44 receives con-
figuration information from administrator 42 and, in
response, configures IDS 20 to monitor a network or portions
thereof (subnets) of interest (120). During this process, con-
figuration manager 44 presents a user interface by which
administrator 42 specifies patterns or other attack definitions
33. For example, administrator 42 may configure IDS 20 to
block all fully encrypted packets and log information about
the communication session associated with the packet.
Administrator 42 may also configure IDS 20 to throttle down
the communication session associated with the packet to
minimize the bandwidth used by the communication session.
Administrator 42 may also configure IDS 20 to block future
communication sessions from either or both of the commu-
nicating devices. IDS 20 may additionally include a default
configuration that specifies actions IDS 20 should take when
IDS 20 detects a fully encrypted packet. IDS 20 may, for
example, be programmed to let such packets pass by default,
or to block all fully encrypted packets by default.

Once configured, IDS 20 monitors network traffic 24
(122). In some configurations, stateful inspection engine 28
of forwarding plane 22 receives network traffic and mirrors

10

15

20

25

30

35

40

45

50

55

60

65

12

the network traffic for purposes of analysis. Forwarding com-
ponent 31 seamlessly forwards the original network traffic.

Stateful inspection engine 28 of forwarding plane 22 next
receives a packet, e.g., from flow analysis module 25 (124).
While stateful inspection engine 28 may receive all packets of
a communication session, for the purposes of this discussion,
it is assumed that this packet is a packet following the packets
used to establish the three-way handshake of TCP/IP.

Application identification module 51 attempts to identify
an application associated with the received packet (126). For
example, application identification module 51 inspects the
packet header to determine the destination port of the packet.
In some cases, the destination port is associated with the
protocol or application being used for the communication
session. For example, port 80 is typically associated with
HTTP traffic, while port 22 is typically associated with SSH
traffic. Application identification module 51 may also attempt
to identify an application-layer header of the packet and use
the application-layer header to identify the application asso-
ciated with the communication session. Application identifi-
cation module 51 may use any known or future technique to
attempt to determine the application associated with the com-
munication session.

When application identification module 51 is able to deter-
mine the application associated with the communication ses-
sion (“YES” branch of 126), application identification mod-
ule 51 forwards the packet (128). In one embodiment,
application identification module 51 may send the packet to
protocol decoders 30 to identify the protocol in use for the
communication session. In another embodiment, application
identification module 51 may send the packet to attack detec-
tion module 52 to inspect the packet and to determine whether
the packet is associated with a network attack. In yet another
embodiment, IDS 20 may simply forward the packet towards
its destination in the network.

In one embodiment, application identification module 51
sends the packet to protocol decoders 30. Protocol decoders
30 may attempt to determine if the packet resembles a proto-
col by, for example, looking for particular data at particular
locations in the packet, such as in the application-layer
header, and/or by applying pattern matching on portions of
the TCP/IP payload. Protocol decoders 30 may further
inspect the packet to determine if the packet is part of a key
exchange of the communication session. When protocol
decoders 30 determine that the packet is part of a key
exchange of the communication session, protocol decoders
30 may log this determination in association with the com-
munication session.

As an example, the communication session may be in
accordance with the secure socket layer (SSL) protocol.
Although application identification module 51 may not be
able to determine the specific application associated with the
communication, protocol decoders 30 may determine that the
communication session is using the SSL protocol. The SSL
protocol uses several messages to indicate the use of the SSL,
protocol after the TCP/IP three-way handshake. A client
using the SSL protocol will first send a ClientHello message
to a server that includes the highest transportation layer secu-
rity (TLS) protocol version the client supports, a random
number, a cipher suite that the client supports, and compres-
sion methods supported by the client. The server will respond
with a ServerHello message including a selected TLS proto-
col version, a random number, a cipher suite, and a compres-
sion method, each of which the server may select from the
client’s ClientHello message. Other standard messages are
also exchanged between the client and the server to initiate an
SSL session. Protocol decoders 30 may include an SSL

US 9,077,692 B1

13

decoder that may identity the protocol in use for the commu-
nication session as SSL.. Moreover, protocol decoders 30 may
recognize a packet that includes key exchange information
that is exchanged as part of the SSL protocol. For example,
protocol decoders 30 may recognize a ClientMasterKey mes-
sage sent by the client to the server. Protocol decoders 30 may
also recognize a ServerVerify message sent by the server to
the client. Protocol decoders 30 may recognize any or all of
these messages, for example, by inspecting the application
layer packet header.

When application identification module 51 is unable to
determine the application associated with the communica-
tion, however, (“NO” branch of 126), application identifica-
tion module 51 sends the packet to encryption detection mod-
ule 58. Encryption detection module 58 inspects the packet
when application detection module 51 cannot identify an
application associated with the communication session and
when protocol decoders 30 cannot identify a protocol asso-
ciated with the communication session. Encryption detection
module 58 attempts to determine whether the packet is fully
encrypted (128). Encryption detection module 58 determines
arandomness value for the TCP/IP payload of the packet and
compares the randomness value to a randomness threshold.
Where the randomness value exceeds the randomness thresh-
old, encryption detection module 58 determines that the
packet is fully encrypted.

When encryption detection module 58 determines that the
packet is not fully encrypted (“NO” branch of 128), encryp-
tion detection module 58 may forward the packet. For
example, in one embodiment, IDS 20 may simply forward the
packet toward its network destination. In another embodi-
ment, encryption detection module 58 may send the packet to
attack detection module 52 to determine whether the packet
represents a network attack.

When encryption detection module determines that the
packet is fully encrypted, however, (“YES” branch of 128),
encryption detection module 58 may determine whether a key
exchange has already been identified for the communication
session (130). As discussed above, protocol decoders 30 may
have determined that one or more previously exchanged
packet represented a key exchange and logged the fact that a
non-hidden (i.e., readily detectable) key exchange has
occurred for the communication session. If this has taken
place earlier in the communication session, (“YES” branch of
130), in this embodiment encryption detection module 58
determines that the current packet, while potentially fully
encrypted, is not associated with an invalid or otherwise
unwanted application. Therefore, encryption detection mod-
ule 58 may forward the packet. For example, in one embodi-
ment, IDS 20 may simply forward the packet toward its
network destination. In another embodiment, encryption
detection module 58 may send the packet to attack detection
module 52 to determine whether the packet represents a net-
work attack.

However, if there has been no earlier key exchange (“NO”
branch of 130), encryption detection module may output an
alert and take a programmed response (132). The response to
take may be in accordance with configuration data received
from, e.g., administrator 42, at step (120).

Although this embodiment has been described with respect
to fully encrypted packets, the techniques may be applied to
packets in which only the portions of the TCP/IP payload that
typically correspond to the application-layer payloads have
been encrypted. For example, such encrypted packets may be
discarded when no key exchange for the communication ses-
sion has been previously detected and logged.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 6 is a flowchart illustrating an exemplary method to
determine whether a packet is fully encrypted. For exemplary
purposes, the method of FIG. 6 is described with respect to
encryption detection module 58 of FIG. 3. In the exemplary
method depicted in FIG. 6, encryption detection module 58
may apply the Wald-Wolfowitz runs test to a packet to deter-
mine whether the data of the packet is random. In this exem-
plary method, encryption detection module 58 may also apply
one or more filters to the packet to determine whether the data
of'the packet is random. In general, any statistical method for
determining randomness or entropy of data in packets may be
used to determine whether data of a packet is encrypted. That
is, encryption detection module 58 may determine that data of
a packet is random by implementing any statistical random-
ness- or entropy-identifying technique. In general, when
encryption detection module 58 determines that data of a
packet is random or has high entropy, e.g., by exceeding a
randomness or entropy threshold, encryption detection mod-
ule 58 determines that the packet is encrypted.

Another exemplary method for identifying encrypted
packets includes tracking two classes for bytes of a packet and
comparing the sizes of the classes. One class may represent
bytes with values in the hexadecimal range from 0x00 to Ox7F
and another class may represent bytes with values from 0x80
to Oxff. Encryption detection module 58 tracks two counters,
one for each of the two classes. When encryption detection
module 58 identifies a byte with a value for the first class,
encryption detection module 58 increments the counter for
the first class, and when encryption detection module 58
identifies a byte with a value for the second class, encryption
detection module 58 increments the counter for the second
class. Encryption detection module 58 then determines that a
packetis random, hence encrypted, when the two counters are
relatively equal, i.e., within a certain range of each other.

Another exemplary method for determining whether a
packet is encrypted includes identifying repeating patterns of
varying lengths, e.g., one byte, two bytes, four bytes, or other
within a packet. That is, encryption detection module 58 may
determine that a packet is not random when encryption detec-
tion module 58 determines that there exist repeating patterns
within the packet.

Initially, encryption detection module 58 receives a packet
(140). For example, encryption detection module 58 may
receive a TCP/IP packet from, e.g., protocol decoders 30.
Encryption detection module 58 may then determine the size
N of the TCP/IP payload portion or, in another embodiment,
just a portion of the TCP/IP payload of the received packet
that typically corresponds to an application-layer header
(142). In general, the size of the packet’s TCP/IP payload
refers to the number of bytes in the packet to be analyzed. In
one embodiment, encryption detection module 58 may
receive the number of bytes in the packet as an argument to a
function or as a configurable input from a user.

Encryption detection module 58 next determines the mean
of the byte values in the packet for the portion of TCP/IP
payload being analyzed (144). Encryption detection module
58 may, for example, add the value of each byte of that portion
of the packet in an accumulator variable and divide the total
by the total number of bytes N, as determined above, to
determine a mean value. Encryption detection module 58
may then determine a number of “runs” of bytes in the packet,
where a “run” is a sequence of bytes that are all above or
below the determined mean value (146). For example, for
each byte, encryption detection module 58 may determine
whether the value of the byte is greater than or less than the
determined mean of the packet. Encryption detection module
58 may use a data structure, such as an array, to keep track of

US 9,077,692 B1

15

a comparison of each byte in the packet to the mean value of
all bytes in the packet. Where a byte has a value that is greater
than the mean, that byte may be assigned a value of “0,” in the
array. Where a byte has a value that is less than or equal to the
mean, the byte may be assigned a value of “1” in the array.
Encryption detection module 58 may use other data struc-
tures, instead of an array, to track the comparison as well.

In general, a “run” is a sequence of adjacent cells in the
array that all have the same value. As a simplified example, an
array such as “0001111100110000111” has six runs, three
“0” runs and three “1” runs. Encryption detection module 58
determines the total number of runs in the packet by examin-
ing each of the cells in the array. For example, encryption
detection module 58 may examine each array cell individu-
ally to determine whether that cell constitutes a continuation
of a run (i.e., has the same value of the previous cell), or
whether that bit constitutes a new run (i.e., has the opposite
value of the previous cell). Encryption detection module may
also determine the number of runs in other ways.

Encryption detection module 58 also determines how
many of each cell value, i.e. “0” and “1” occur in the packet.
Encryption detection module 58 may make this determina-
tion concurrently with determining the number of runs in step
(146), or as an additional step. Encryption detection module
58 may, for example, include two counters, an N,, counter to
count the number of “0” valued cells and an N, counter to
count the number of “1” valued cells. Because the packetis N
bytes in length, and each cell will only have the value “0” or
“17, N should equal Ny+N; . In the exemplary string above, N
is 19, N, is 9, and N, is 10.

Encryption detection module 58 next determines the
expected number of runs in a packet with N bytes (148). In
accordance with the Wald-Wolfowitz runs test, the number of
runs in a sequence should be a random variable. A random
variable has two elements, a mean (i) and a variance (o%).
Encryption detection module 58 calculates the mean in accor-
dance with the Wald-Wolfowitz runs test by determining:

2% Nox Ny
- N

Encryption detection module 58 uses the values of N, N, and
N, determined earlier at steps (142), (144), and (146) to
determine the mean. In accordance with the Wald-Wolfowitz
runs test, this is the mean number of runs in a packet with N
bytes. For the example, u=10.

Encryption detection module 58 also determines the vari-
ance (07) (150). In accordance with the Wald-Wolfowitz runs
test, encryption detection module 58 calculates the variance
(0?) by determining:

> w-De-2)
TOWN-D

Encryption detection module 58 uses the value of y, deter-
mined earlier at step (148), to determine the variance. This
formula is a simplification of the formula prescribed by Wald-
Wolfowitz, which is:

> 2« No= Ny #(2«NoxN| —N)
T = N=N=(N—-1)

10

15

20

25

30

35

40

45

50

55

60

65

16

Various embodiments of encryption detection module 58 may
use either the prescribed formula or the simplification thereof
from Wald-Wolfowitz for determining the variance (o%). In
accordance with the Wald-Wolfowitz runs test, this is the
variance to the mean number of runs in a packet of size N. In
one embodiment, administrator 42 may further configure or
refine this equation for determining the variance using secu-
rity management module 44. For the example bit string
above, 0°=4.

Encryption detection module 58 next determines whether
the actual number of runs in the packet is within the range
predicted by the Wald-Wolfowitz runs test, to determine
whether the bits in the packet are random (152). In one
embodiment, encryption detection module 58 determines the
randomness of the data in the packet by determining:

|(#_Runs(packet)-p)/ol=x

That is, encryption detection module 58 compares the abso-
lute value of the difference between the actual number of runs
in the packet and the mean number of runs in a packet of size
N, as determined by the Wald-Wolfowitz runs test, divided by
the variance. If this value is within a certain range (x), then
encryption detection module 58 determines that the packet is
random. Otherwise, encryption detection module 58 deter-
mines that the packet is not random. In one embodiment, a
user, such as administrator 42, may configure the value of x.
The value of x may be, for example, 2.58. In the above
example, the number of actual runs is 6, and the mean number
of runs is 10, the difference being 4. If the value of x is 2.58,
the example sequence “0001111100110000111” could be
determined to be random, because the difference (value 4)
divided by the square-root of the variance (2) is less than 2.58.

When encryption detection module 58 determines that data
in the portion of the packet being tested qualifies as random
(“YES” branch of 152), encryption detection module 58
marks the packet as encrypted (158). When, on the other
hand, encryption detection module 58 determines that data in
the packet is not random, i.e., below the defined threshold
(“NO” branch 0of 152), encryption detection module 58 deter-
mines that the packet is not encrypted (156). In general, a
packet from an application following a particular unen-
crypted protocol has a high amount of runs, which would be
outside the number of runs predicted by the Wald-Wolfowitz
runs test.

In one embodiment, an administrator, such as administra-
tor 42, may add, edit, or remove filters of encryption detection
module 58. A filter instructs encryption detection module 58
to determine that a packet is random or not random based on
certain filtering characteristics. The filtering characteristics
may include, for example, the number of bytes in the packet,
examining bytes in the packet for a certain pattern, determin-
ing whether a minimum number of byte values above or
below the mean occur, or other characteristics of a random or
nonrandom packet. The following pseudocode shows one
exemplary embodiment of a function performed by encryp-
tion detection module 58 on a packet to determine whether the
packet is random or not:

/*The Wald-Wolfowitz test wawo_cf() function

returns a Rand_Val of either IS RANDOM or NOT _
RANDOM?*/

Rand_Val wawo_cf(<packet_bytes>, <number-of-packet-

bytes>) {

//Filter to determine if the packet exceeds a minimum

length

if (<number-of-packet-bytes><MIN_LEN)

return NOT_RANDOM;
//Determine N

US 9,077,692 B1

17
N=min(<number-of-packet-bytes>, MAX_LEN); /*char-
acters to analyze™®/
/[Filter data for the sequence of printable characters found
if (len(sequence)>printable_seq_max)
return NOT_RANDOM;
/[Filter data for the sequence of not-printable characters
found
if (len(sequence)>not-printable_seq_max)
return NOT_RANDOM;
/[Filter data for repeating character groups mapped to the
same value
/*to catch sequence like (hex):
4131320001413132...%
if (not_passed)
return NOT_RANDOM;
/[Calculating average value n_averg through N bytes
sum=0;
n_averg=0;
for (i=0; i<N; i++)
sum=packet_bytes[i];
n_averg=sum/N;
//Mapping N bytes into the array of N elements
//Also count number of elements mapped to 0 as np0
/fand elements mapped to 1 as npl
map[N];
np0=0;
np1=0;
for (i=0; i<N; i++)
if (map[i]>n_averg)
mapl[i]=1;
npl++;
else
map[i]=0;
npO++;
/la “run” is a continuous series of 0’s or 1°s
//{Count number of runs as nruns
nruns=0;
last=map[0];
for (i=1; i<N; i++)
if (map[i]!=last)
last=map [i];
nruns++;
//IMIN_SAME_VALUE is a configurable variable
/leach type of symbol in the pattern should be greater than
MIN_SAME_VALUE
//if the packet is random
MIN_SAME_VALUE=8;
if (npO<MIN_SAME_VALUE
npl<MIN_SAME_VALUE)
return NOT_RANDOM;
expectedRuns=2*np0*np1/(npO+npl)+1;
varianceNumerator=2*np0*np1*(2*np0*np1-N);
varianceDenominator=N*N*(N-1);
variance=varianceNumerator/varianceDenominator;
expectedRuns=nruns—expectedRuns;
expectedRuns*=expectedRuns;
K=(nruns-expectedRuns)/Math.Sqrt(variance);
//RAND_PARAM is a configurable variable
//if K is within RAND_PARAM, the packet is random
RAND_PARAM=2.580;
if (K>=-RAND_PARAM and K<=RAND_PARAM)
return IS_RANDOM;
else
return NOT_RANDOM;

or

As is evident from the exemplary pseudocode, encryption
detection module 58 may use a combination of the Wald-

10

15

20

25

30

35

40

45

50

55

60

65

18

Wolfowitz runs test and one or more filters to determine
whether the contents of a packet are random. Other filters and
algorithms can also be used to determine whether a packet is
random.

FIGS. 7A-7B are screenshots illustrating one embodiment
of'administrator user interface 300 presented by an exemplary
embodiment of security management module 44. In general,
security management module 44 presents administrator user
interface 300 that includes two tabs, “Filter” tab 302 and
“Actions” tab 304.

FIG. 7A depicts administrator user interface 300 when
“Filters” tab 302 is selected, as indicated by highlighting of
filters tab 302. Filters tab 302 may be selected either by a user
or as a default selection upon initial presentation of adminis-
trator user interface 300. Filters tab 302 presents a list of
available filters 308 to a user, such as administrator 42. In the
example of FIG. 7A, available filters 308 include a minimum
length for a packet selectable by check box 310A, a maximum
length for a packet selectable by check box 310B, and a filter
to determine whether values repeat in the packet selectable by
check box 310C.

When administrator 42, for example, selects check box
310A, administrator 42 may also enter a value into field 320.
This value may correspond to a minimum length for a packet.
When administrator 42 enters a value into field 320 and
selects save button 344, administrator user interface 300 may
instruct security management module 44 to use a filter to
determine whether a packet exceeds a minimum length ofthe
value entered in field 320. For example, administrator 42 may
determine that packets that do not exceed a minimum number
of'bytes are not a concern, so those packets should simply be
declared not random.

When administrator 42 selects check box 3108, adminis-
trator 42 may also enter a value into field 322. This value may
correspond to a maximum length for a packet. When admin-
istrator 42 enters a value into field 322 and selects save button
344, administrator user interface 300 may instruct security
management module 44 to use a filter to determine whether a
packet is less than a maximum length of the value entered in
field 322. For example, administrator 42 may determine that
packets that exceed a maximum number of bytes are not a
concern, so those packets should simply be declared not ran-
dom.

When administrator 42 selects check box 310A and selects
save button 344, administrator user interface 300 instructs
security management module 44 to use a filter to determine
whether data in a packet has repeating values. Repeated data
in a packet may be an indication that the packet is not random,
or that the packet is associated with a protocol that should not
be blocked. In one embodiment, encryption detection module
58 compares data in the packet to other data in the packet to
find a repeating sequence. In one embodiment, encryption
detection module 58 stores a sequence of data from each
packet in a communication session and determines whether
there exists a repeated value in each packet of the communi-
cation session; in this case, the repeated value may indicate a
standard header of an unknown protocol. In any case, IDS 20
may utilize a repeating values filter.

Administrator 42 may also add new filters to security man-
agement module 44. In the example of FIG. 7A, administrator
42 may enter a new filter into field 312 of administrator user
interface 300. Upon completing a filter, administrator 42 may
select “add” button 314 to add the filter to IDS 20. Alterna-
tively, administrator 42 may select “load” button 316 to
retrieve a previously recorded filter from a computer-readable
medium, such as a hard drive, a network drive, a flash memory
stick, or other location. In this case, administrator 42 may

US 9,077,692 B1

19
load the filter and save the filter to IDS 20. IDS 20 applies the
new filters added by administrator 42, once administrator 42
selects save button 344.

FIG. 7B depicts administrator user interface 300 when
“Actions” tab 304 is selected, as indicated by highlighting of
actions tab 304. Actions tab 304 presents detection options
panel 340 and response actions panel 360 to a user, such as
administrator 42. In the example of FIG. 7B, detection
options panel 340 presents two options to administrator 42:
“Detect fully encrypted packets” and “Detect key exchange.”
Administrator 42 may select either option using a check box,
such as one of check box 342A or check box 342B. Other
embodiments may use other selection methods, such as radio
buttons, drop down lists, or other selection methods. In one
embodiment, when check box 342 is not selected, other
options of administrator user interface 300, such as check
boxes 343A-343D and the corresponding text within
response actions panel 360, may be displayed in a grayed-out
format, and administrator user interface 300 may prevent a
user from selecting check boxes 343A-343D.

When administrator 42 selects “Detect fully encrypted
packets” check box 342A, and then selects save button 344,
administrator user interface 300 sends a corresponding mes-
sage to security management module 44. In particular, when
“Detect fully encrypted packets” check box 342A is selected,
administrator user interface 300 sends a message to security
management module 44 to detect fully encrypted packets, or
to operate in a detect fully encrypted packets mode. Accord-
ingly, security management module 44 instructs stateful
inspection engine 28 to analyze incoming packets to deter-
mine whether those packets are fully encrypted. Stateful
inspection engine 28 then begins to determine whether
incoming packets are fully encrypted, for example, using the
methods disclosed herein, or other methods for detecting
encrypted packets.

When administrator 42 selects “Detect key exchange”
check box 342B, and then selects save button 344, adminis-
trator user interface 300 sends a corresponding message to
security management module 44. In particular, when “Detect
key exchange” check box 342A is selected, administrator
user interface 300 sends a message to security management
module 44 to detect key exchanges for monitored communi-
cation sessions, or to operate in a detect key exchange mode.
Accordingly, security management module 44 instructs state-
ful inspection engine 28 to analyze incoming packets to deter-
mine whether those packets represent a key exchange for their
corresponding communication session. Stateful inspection
engine 28 then begins to determine whether incoming packets
represent a key exchange as part of the communication ses-
sion. In one embodiment, stateful inspection engine 28 may
only determine whether a first set of packets of a communi-
cation session represents a key exchange. In one embodiment,
stateful inspection engine 28 may only determine whether
packets represent a key exchange when those packets corre-
spond to a communication session for which an application
and/or a protocol cannot be identified.

In one embodiment, administrator 42 may select both
“Detect fully encrypted packets” check box 342A and
“Detect key exchange” check box 342B. In other embodi-
ments, administrative user interface 300 may limit adminis-
trator 42 to selecting exactly one of “Detect fully encrypted
packets” check box 342A and “Detect key exchange” check
box 342B. In still other embodiments administrative user
interface 300 may limit administrator 42 to selecting only one
of “Detect fully encrypted packets” check box 342A and
“Detect key exchange” check box 342B or neither of the two.

25

35

40

45

20

In the example of FIG. 7B, check box 342A is checked, as
marked with an “X” within check box 342A, and check box
342B is unchecked, without the presence of an “X” in check
box 342B. Other embodiments may use other visual cues to
indicate whether a check box is checked. For example, in one
embodiment, check boxes 342A-342F (check boxes 342)
may indicate a “checked” status by including a check mark in
a checked one of check boxes 342.

Actions tab 304 of administrator user interface 300 also
presents response actions panel 360 to a user, such as admin-
istrator 42. Response actions panel 360 presents four options
to administrator 42: “Drop packets”, “Throttle session”,
“Send alert message”, and “Log detection.” Administrator 42
may select these options using check boxes 342C-342F,
respectively. Other embodiments may include other
responses, such as blocking future communication sessions
from a computing device that sent a fully encrypted packet, or
blocking the communication session in which a fully
encrypted packet was identified.

When administrator 42 selects drop packets check box
342C, and then selects save button 344, administrator user
interface 300 sends a corresponding message to security man-
agement module 44. In particular, when “Drop packets”
check box 342C is selected, administrator user interface 300
sends a message to security management module 44 to drop
packets associated with the communication session corre-
sponding to options selected in detection options panel 340.
For example, when “Detect fully encrypted packets” check
box 342A is selected, security management module 44
instructs stateful inspection engine 28 to drop packets asso-
ciated with a communication session in which a packet that
was fully encrypted was detected. As another example, when
“Detect key exchange” check box 342B is selected, security
management module 44 instructs stateful inspection engine
28 to drop packets associated with a communication session
when those packets are fully encrypted but no identifiable key
exchange has been detected.

When administrator 42 selects throttle session check box
342D, and then selects save button 344, administrator user
interface 300 sends a corresponding message to security man-
agement module 44. In particular, when “Throttle session”
check box 342E is selected, administrator user interface 300
sends a message to security management module 44 to
throttle any communication session corresponding to options
selected in detection options panel 340. For example, when
“Detect fully encrypted packets” check box 342A is selected,
security management module 44 instructs stateful inspection
engine 28 to throttle a communication session in which fully
encrypted packets were detected. As another example, when
“Detect key exchange” check box 342B is selected, security
management module 44 instructs stateful inspection engine
28 to throttle communication sessions in which a fully
encrypted packet is detected without first detecting a key
exchange for that communication session.

When administrator 42 selects send alert message check
box 342E, and then selects save button 344, administrator
user interface 300 sends a corresponding message to security
management module 44. In particular, when “Send alert mes-
sage” check box 342F is selected, administrator user interface
300 sends a message to security management module 44 to
send an alert message to, e.g., administrator 42. Accordingly,
when IDS 20 detects a fully encrypted packet, security man-
agement module 44 sends an alert to administrator 42. The
alert may be any sort of an alert, e.g., a pop-up window, an
e-mail, a text message, a page, an audible alert, or any other
sort of an alert to inform administrator 42 that IDS 20 has
detected, e.g., a fully encrypted packet.

US 9,077,692 B1

21

When administrator 42 selects log detection check box
342F, and then selects save button 344, administrator user
interface 300 sends a corresponding message to security man-
agement module 44. In particular, when “Log detection”
check box 342A is selected, administrator user interface 300
sends a message to security management module 44 to make
a log of the event that was identified. For example, security
management module 44 records the source port, destination
port, source IP address, destination IP address, time of dis-
covery, packet size, a copy of the packet, other actions taken
in response to the detection, or any other information that
administrator 42 may find useful. Security management mod-
ule 44 may create this log in, e.g., a database, a text file, or any
appropriate data structure.

When administrator 42 selects cancel button 346, in one
embodiment, check boxes 342 revert to a previous setting,
e.g. the setting as of the last time save button 344 was selected.
In one embodiment, when administrator 42 selects cancel
button 346, check boxes 342 revert to a default setting. When
administrator 42 selects cancel button 346, administrator user
interface 300 sends a message to security management mod-
ule 44 to perform in accordance with a setting associated with
a selection of cancel button 346. In one embodiment, security
management module 344 closes administrative user interface
300, i.e. remove the administrative user interface 300 window
from view on, e.g., a computer monitor displaying adminis-
trative user interface 300.

Methods described herein may be performed in hardware,
software, or any combination thereof within a network
device. For example, methods described herein may be per-
formed by an application specific integrated circuit (ASIC) or
a general-purpose processor. Methods described herein may
also be embodied in a computer readable medium containing
instructions. Instructions embedded in a computer readable
medium may cause a programmable processor, or other pro-
cessor, to perform the method, e.g. when the instructions are
executed. A computer readable medium may be a computer
readable storage medium. Computer readable storage media
may include, for example, random access memory (RAM),
read only memory (ROM), programmable read only memory
(PROM), erasable programmable read only memory
(EPROM), electronically erasable programmable read only
memory (EEPROM), flash memory, a hard disk, a CD-ROM,
a floppy disk, a cassette, magnetic media, optical media, or
other computer readable media.

Various embodiments of the invention have been
described. These and other embodiments are within the scope
of the following claims.

The invention claimed is:

1. A method comprising:

displaying an administrator interface;

receiving, with the administrator interface, one or more
instructions to add, remove, or edit at least one filter;

receiving a network packet;

using an application-layer header of the packet, determin-
ing whether the packet is associated with an identifiable
network application;

when the packet is determined to be associated with an
identifiable network application, forwarding the packet
without determining whether the packet is encrypted;

only when the packet is not determined to be associated
with an identifiable network application, determining
whether data in the packet is encrypted by applying the
at least one filter to the data and calculating a random-
ness value of the packet from a payload of the packet that
includes the application-layer header and an applica-

10

15

20

25

30

35

40

45

50

55

60

65

22

tion-layer payload and determining that the packet is
encrypted when the randomness value exceeds a ran-
domness threshold;

when the data in the packet is determined to be encrypted,

executing a programmed response; and

when the data in the packet is determined to not be

encrypted, forward the packet.

2. The method of claim 1, wherein determining whether
data in the packet is encrypted comprises applying the Wald-
Wolfowitz runs test to the payload of the packet that includes
the application-layer header and the application-layer pay-
load.

3. The method of claim 2, wherein applying the Wald-
Wolfowitz runs test comprises:

determining a size value for the packet;

determining a mean value for the bytes in the packet;

determining a number of bytes with values in excess of the

mean in the packet;

determining a number of bytes with values below and equal

to the mean in the packet;
determining a number of runs of bytes in the packet;
determining an expected number of runs for a general
packet having the size value of the packet, the number of
bytes with values in excess of the mean, and the number
of bytes with values below and equal to the mean;

determining a variance for the general packet; and

determining that the data in the packet is encrypted when
the absolute value of the difference between the number
of runs in the packet and the expected number of runs for
the general packet, divided by the square root of the
variance, is within a randomness threshold.

4. The method of claim 3,

wherein determining an expected number of runs com-

prises determining that the expected number of runs is
equal to two times the number of bytes in excess of the
mean times the number of bytes below and equal to the
mean divided by the size value, plus one; and

wherein determining a variance comprises determining

that the variance is equal to a quantity, the quantity being
the expected number of runs minus one times the
expected number of runs minus two, the quantity then
being divided by a second quantity, the second quantity
being the size value minus one.

5. The method of claim 1, further comprising determining
whether the packet represents a key exchange.

6. The method of claim 5, further comprising:

identifying a key exchange for a communication session

for the packet; and

making a record of the key exchange for the communica-

tion session after identifying the key exchange.

7. The method of claim 6, wherein executing a pro-
grammed response comprises:

determining, when the data of the packet is determined to

be encrypted, whether a key exchange has been
recorded; and

when a key exchange has not been recorded, dropping the

packet, and

when a key exchange has been recorded, forwarding the

packet.

8. The method of claim 1, wherein executing a pro-
grammed response comprises dropping the packet.

9. The method of claim 1, wherein executing a pro-
grammed response comprises sending an alert.

10. The method of claim 1, further comprising identifying
the packet as belonging to a communication session between
a server and a client.

US 9,077,692 B1

23

11. The method of claim 1, further comprising, when the
data in the packet is determined to not be encrypted, forward-
ing the packet.

12. The method of claim 1, wherein forwarding the packet
further comprises:

determining whether the identifiable network application

is a legitimate network application;

when the identifiable network application is determined to

be a legitimate network application, forwarding the
packet; and

when the identifiable network application is determined

not to be a legitimate network application, dropping the
packet.
13. A network device comprising:
an interface to receive a packet; and
one or more hardware-based processing units that imple-
ment an application identification module, an encryp-
tion detection module, and an attack detection module,
and that present an administrator interface and receive,
with the administrator interface, one or more instruc-
tions to add, remove, or edit at least one filter,
wherein the application identification module is config-
ured to attempt to identify an application associated with
the packet, and wherein when the application identifica-
tion module is able to identify an application associated
with the packet, to cause the network device to forward
the packet,
wherein the encryption detection module is configured to
apply the at least one filter to the packet to determine
whether the packet is encrypted only when the applica-
tion identification module is unable to identify an appli-
cation associated with the packet and not to determine
whether the packet is encrypted when the application
identification module is able to identify an application
associated with the packet, wherein to determine
whether the packet is encrypted, the encryption detec-
tion module is configured to calculate a randomness
value of the packet from a payload of the packet that
includes the application-layer header and an applica-
tion-layer payload and determine that the packet is
encrypted when the randomness value exceeds a ran-
domness threshold,
wherein the attack detection module is configured to deter-
mine whether the packet is associated with a network
attack, to forward the packet when the packet is not
associated with a network attack, and to take a response
when the packet is associated with a network attack, and

wherein the encryption detection module is configured to
send a message to the attack detection module that indi-
cates whether the packet is encrypted, wherein when the
message indicates that packet is encrypted, the attack
detection module determines that the packet is associ-
ated with a network attack.

10

15

20

25

30

35

50

24

14. The device of claim 13, wherein the encryption detec-
tion module implements the Wald-Wolfowitz runs test and
applies the Wald-Wolfowitz runs test to the packet to deter-
mine whether the packet is encrypted.

15. The device of claim 13, wherein the attack detection
module determines whether the packet represents a key
exchange, records whether a key exchange has been detected
for a communication session, and, when a key exchange has
not been detected for a communication session associated
with the packet and the encryption detection module has
determined that the packet is encrypted, drops the packet, and
when a key exchange has been detected for the communica-
tion session associated with the packet and the encryption
detection module has determined that the packet is encrypted,
forwarding the packet.

16. A non-transitory computer-readable medium compris-
ing instructions that cause a programmable processor to:

display an administrator interface;

receive, with the administrator interface, one or more

instructions to add, remove, or edit at least one filter;
receive a network packet;

determine whether the packet is associated with a network

application using an application-layer header of the
packet;
when the packet is determined to be associated with an
identifiable network application, forward the packet
without determining whether the packet is encrypted;

determine whether data in the packet is encrypted, only
when the packet is not determined to be associated with
an identifiable network application, by applying the at
least one filter to the data and calculating a randomness
value of the packet from a payload of the packet that
includes the application-layer header and an applica-
tion-layer payload and determining that the packet is
encrypted when the randomness value exceeds a ran-
domness threshold; and

when the data in the packet is determined to be encrypted,

execute a response, and

when the data in the packet is determined not to be

encrypted, forward the packet.

17. The non-transitory computer-readable medium of
claim 16, further comprising instructions to apply the Wald-
Wolfowitz runs test to the packet to determine whether the
data in the packet is encrypted.

18. The non-transitory computer-readable medium of
claim 16, further comprising instructions to:

determine whether a key exchange has occurred for a com-

munication session associated with the packet; and
when the data in the packet is determined to be encrypted:
forward the packet when a key exchange has occurred
for the communication session, and
drop the packet when a key exchange has not occurred
for the communication session.

#* #* #* #* #*

